Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.160
Filtrar
1.
Sci Rep ; 14(1): 8384, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600114

RESUMO

Spindle-shaped waves of oscillations emerge in EEG scalp recordings during human and rodent non-REM sleep. The association of these 10-16 Hz oscillations with events during prior wakefulness suggests a role in memory consolidation. Human and rodent depth electrodes in the brain record strong spindles throughout the cortex and hippocampus, with possible origins in the thalamus. However, the source and targets of the spindle oscillations from the hippocampus are unclear. Here, we employed an in vitro reconstruction of four subregions of the hippocampal formation with separate microfluidic tunnels for single axon communication between subregions assembled on top of a microelectrode array. We recorded spontaneous 400-1000 ms long spindle waves at 10-16 Hz in single axons passing between subregions as well as from individual neurons in those subregions. Spindles were nested within slow waves. The highest amplitudes and most frequent occurrence suggest origins in CA3 neurons that send feed-forward axons into CA1 and feedback axons into DG. Spindles had 50-70% slower conduction velocities than spikes and were not phase-locked to spikes suggesting that spindle mechanisms are independent of action potentials. Therefore, consolidation of declarative-cognitive memories in the hippocampus may be separate from the more easily accessible consolidation of memories related to thalamic motor function.


Assuntos
Hipocampo , Tálamo , Humanos , Hipocampo/fisiologia , Tálamo/fisiologia , Córtex Cerebral/fisiologia , Axônios , Neurônios , Eletroencefalografia , Sono/fisiologia
2.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656542

RESUMO

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Assuntos
Comportamento Exploratório , Hipocampo , Plasticidade Neuronal , Ratos Wistar , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo , Animais , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Hipocampo/metabolismo , Hipocampo/fisiologia , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Comportamento Exploratório/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia
3.
Neurochem Res ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656691

RESUMO

N-methyl-D-aspartate receptor-dependent excitotoxicity is one of the most important mechanisms underlying stroke injury and the resulting neuronal death. In the present study, in order to reduce post-stroke brain injury and improve behavioral performance, a new molecule named IC87201, which acts as an inhibitor of PSD95/nNOS interaction in the intracellular signaling pathway of NMDA receptors, was administered. Using the middle cerebral artery occlusion (MCAO) technique, 24 adult male rats were subjected to one hour of cerebral ischemia. Animals were randomly divided into sham, MCAO, MCAO + DXM, and MCAO + IC87201 groups, and in the last two groups, intraperitoneal injection of dextromethorphan hydrobromide monohydrate (DXM), as an NMDA antagonist, and IC87201 was performed after ischemia. Neurobehavioral scores were evaluated for seven days, and on the last two days, the rats' memory performance was appraised using the passive avoidance test. On seventh day, the brain tissue was properly prepared for stereological analysis. Stereological studies of the hippocampus CA1 and CA3 regions revealed that changes in the total and infarcted volumes, total number of neurons, non-neurons, and dead neurons are the consequences of cerebral ischemia. Also, following cerebral ischemia, neurobehavioral and memory function impairments which were assessed by modified neurological severity scores (mNSS) and passive avoidance test, were observed. The aforementioned impairments were recovered after administration of IC87201 significantly and more potently than DXM. Based on our findings, IC87201 successfully attenuated post-ischemia damages. Therefore, this molecule can be considered as a new therapeutic approach in future research.

4.
J Comput Neurosci ; 52(2): 133-144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581476

RESUMO

Spatial navigation through novel spaces and to known goal locations recruits multiple integrated structures in the mammalian brain. Within this extended network, the hippocampus enables formation and retrieval of cognitive spatial maps and contributes to decision making at choice points. Exploration and navigation to known goal locations produce synchronous activity of hippocampal neurons resulting in rhythmic oscillation events in local networks. Power of specific oscillatory frequencies and numbers of these events recorded in local field potentials correlate with distinct cognitive aspects of spatial navigation. Typically, oscillatory power in brain circuits is analyzed with Fourier transforms or short-time Fourier methods, which involve assumptions about the signal that are likely not true and fail to succinctly capture potentially informative features. To avoid such assumptions, we applied a method that combines manifold discovery techniques with dynamical systems theory, namely diffusion maps and Takens' time-delay embedding theory, that avoids limitations seen in traditional methods. This method, called diffusion mapped delay coordinates (DMDC), when applied to hippocampal signals recorded from juvenile rats freely navigating a Y-maze, replicates some outcomes seen with standard approaches and identifies age differences in dynamic states that traditional analyses are unable to detect. Thus, DMDC may serve as a suitable complement to more traditional analyses of LFPs recorded from behaving subjects that may enhance information yield.


Assuntos
Hipocampo , Animais , Hipocampo/fisiologia , Masculino , Ratos , Ratos Long-Evans , Neurônios/fisiologia , Navegação Espacial/fisiologia , Aprendizagem em Labirinto/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia
5.
Cell Rep ; 43(4): 114071, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38592973

RESUMO

Understanding how emotional processing modulates learning and memory is crucial for the treatment of neuropsychiatric disorders characterized by emotional memory dysfunction. We investigate how human medial temporal lobe (MTL) neurons support emotional memory by recording spiking activity from the hippocampus, amygdala, and entorhinal cortex during encoding and recognition sessions of an emotional memory task in patients with pharmaco-resistant epilepsy. Our findings reveal distinct representations for both remembered compared to forgotten and emotional compared to neutral scenes in single units and MTL population spiking activity. Additionally, we demonstrate that a distributed network of human MTL neurons exhibiting mixed selectivity on a single-unit level collectively processes emotion and memory as a network, with a small percentage of neurons responding conjointly to emotion and memory. Analyzing spiking activity enables a detailed understanding of the neurophysiological mechanisms underlying emotional memory and could provide insights into how emotion alters memory during healthy and maladaptive learning.


Assuntos
Emoções , Memória , Neurônios , Humanos , Emoções/fisiologia , Neurônios/fisiologia , Memória/fisiologia , Masculino , Adulto , Feminino , Lobo Temporal/fisiologia , Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Adulto Jovem
6.
Cell Rep ; 43(4): 114100, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607921

RESUMO

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.


Assuntos
Região CA1 Hipocampal , Dendritos , Células Piramidais , Humanos , Células Piramidais/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Animais , Masculino , Camundongos , Dendritos/fisiologia , Feminino , Pessoa de Meia-Idade , Idoso , Ritmo Teta/fisiologia , Adulto
7.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627063

RESUMO

Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.


Assuntos
Condicionamento Palpebral , Hipocampo , Consolidação da Memória , Rememoração Mental , Ratos Long-Evans , Hipocampo/fisiologia , Masculino , Condicionamento Palpebral/fisiologia , Animais , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Aprendizagem por Associação/fisiologia , Ratos , Condicionamento Clássico/fisiologia , Piscadela/fisiologia
8.
Pain Rep ; 9(3): e1159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38655236

RESUMO

Introduction: Patients with chronic pain frequently report cognitive symptoms that affect memory and attention, which are functions attributed to the hippocampus. Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder characterized by paroxysmal attacks of unilateral orofacial pain. Given the stereotypical nature of TN pain and lack of negative symptoms including sensory loss, TN provides a unique model to investigate the hippocampal implications of chronic pain. Recent evidence demonstrated that TN is associated with macrostructural hippocampal abnormalities indicated by reduced subfield volumes; however, there is a paucity in our understanding of hippocampal microstructural abnormalities associated with TN. Objectives: To explore diffusivity metrics within the hippocampus, along with its functional and structural subfields, in patients with TN. Methods: To examine hippocampal microstructure, we utilized diffusion tensor imaging in 31 patients with TN and 21 controls. T1-weighted magnetic resonance images were segmented into hippocampal subfields and registered into diffusion-weighted imaging space. Fractional anisotropy (FA) and mean diffusivity were extracted for hippocampal subfields and longitudinal axis segmentations. Results: Patients with TN demonstrated reduced FA in bilateral whole hippocampi and hippocampal body and contralateral subregions CA2/3 and CA4, indicating microstructural hippocampal abnormalities. Notably, patients with TN showed significant correlation between age and hippocampal FA, while controls did not exhibit this correlation. These effects were driven chiefly by female patients with TN. Conclusion: This study demonstrates that TN is associated with microstructural hippocampal abnormalities, which may precede and potentially be temporally linked to volumetric hippocampal alterations demonstrated previously. These findings provide further evidence for the role of the hippocampus in chronic pain and suggest the potential for targeted interventions to mitigate cognitive symptoms in patients with chronic pain.

9.
Heliyon ; 10(8): e29481, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655332

RESUMO

Addressing the treatment of depression is crucial; nevertheless, the etiology and pathogenesis remain unelucidated. Therefore, this study investigated the effects of teriflunomide (TF) on corticosterone (CORT)-induced depression-like behaviors in mice. Notably, TF administration resulted in a substantial amelioration of anxiety and depression-like behaviors observed in CORT-treated mice. This was evidenced by behavioral assessments conducted via the sucrose preference test (SPT), open-field test (OFT), novelty-suppressed feeding test (NSFT), forced swimming test (FST), and tail suspension test (TST). The administration of CORT inflicts damage upon oligodendrocytes and neurons within the hippocampus. Our findings indicate that TF offers significant protective effects on oligodendrocytes, mitigating apoptosis both invivo and invitro. Additionally, TF was found to counteract the CORT-induced neuronal loss and synaptic damage, as demonstrated by an increase in Nissl-positive cells across hippocampal regions CA1, CA3, and the dentate gyrus (DG) alongside elevated levels of synapse-related proteins including PSD-95 and synaptophysin. Additionally, TF treatment facilitated a reduction in the levels of apoptosis-related proteins while simultaneously augmenting the levels of Bcl2. Our findings indicate that TF administration effectively mitigates CORT-induced depression-like behaviors and reverses damage to oligodendrocytes and neurons in the hippocampus, suggesting TF as a promising candidate for depression.

10.
MethodsX ; 12: 102701, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660048

RESUMO

In the literature, there is consistent evidence related to the influence of chewing on brain functions, either from experimental models or in humans. In the case of humans, most results are restricted to functional tests, lacking cellular or molecular evidence. In the described method, the possibility of using experimental models is presented, as well as the mimicry of deprivation and rehabilitation of masticatory activity and without stress impact. By opting for the use of mash feed, instead of extracting or implanting an intraoral device, alternations between restriction and rehabilitation of mastication were imposed on murine models. The animals completed various temporal windows, with aging also representing a potential factor for translational dementia associations. Additionally, animals were segregated into environments characterized as either standard, simulating a sedentary lifestyle, or enriched, rich in sensorimotor and visuospatial stimulation. Thus, it was possible to study the influence of changes in masticatory activity, associated with aging and environmental enrichment, on cells from subregions of the hippocampus, as well as on performance in tests of learning and spatial memory.•Animal model for masticatory activity alteration;•Masticatory deprivation and rehabilitation, and•Models to study the interaction among masticatory activity, aging and enrichment environment.

11.
Heliyon ; 10(8): e29375, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644855

RESUMO

In the context of Alzheimer's disease (AD), timely identification is paramount for effective management, acknowledging its chronic and irreversible nature, where medications can only impede its progression. Our study introduces a holistic solution, leveraging the hippocampus and the VGG16 model with transfer learning for early AD detection. The hippocampus, a pivotal early affected region linked to memory, plays a central role in classifying patients into three categories: cognitively normal (CN), representing individuals without cognitive impairment; mild cognitive impairment (MCI), indicative of a subtle decline in cognitive abilities; and AD, denoting Alzheimer's disease. Employing the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, our model undergoes training enriched by advanced image preprocessing techniques, achieving outstanding accuracy (testing 98.17 %, validation 97.52 %, training 99.62 %). The strategic use of transfer learning fortifies our competitive edge, incorporating the hippocampus approach and, notably, a progressive data augmentation technique. This innovative augmentation strategy gradually introduces augmentation factors during training, significantly elevating accuracy and enhancing the model's generalization ability. The study emphasizes practical application with a user-friendly website, empowering radiologists to predict class probabilities, track disease progression, and visualize patient images in both 2D and 3D formats, contributing significantly to the advancement of early AD detection.

12.
Dev Psychobiol ; 66(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38646069

RESUMO

Choline and folate are critical nutrients for fetal brain development, but the timing of their influence during gestation has not been previously characterized. At different periods during gestation, choline stimulation of α7-nicotinic receptors facilitates conversion of γ-aminobutyric acid (GABA) receptors from excitatory to inhibitory and recruitment of GluR1-R2 receptors for faster excitatory responses to glutamate. The outcome of the fetal development of inhibition and excitation was assessed in 159 newborns by P50 cerebral auditory-evoked responses. Paired stimuli, S1, S2, were presented 500 msec apart. Higher P50 amplitude in response to S1 (P50S1microV) assesses excitation, and lower P50S2microV assesses inhibition in this paired-stimulus paradigm. Development of inhibition was related solely to maternal choline plasma concentration and folate supplementation at 16 weeks' gestation. Development of excitation was related only to maternal choline at 28 weeks. Higher maternal choline concentrations later in gestation did not compensate for earlier lower concentrations. At 4 years of age, increased behavior problems on the Child Behavior Checklist 1½-5yrs were related to both newborn inhibition and excitation. Incomplete development of inhibition and excitation associated with lower choline and folate during relatively brief periods of gestation thus has enduring effects on child development.


Assuntos
Colina , Potenciais Evocados Auditivos , Ácido Fólico , Humanos , Colina/farmacologia , Colina/metabolismo , Feminino , Ácido Fólico/farmacologia , Masculino , Recém-Nascido , Gravidez , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Pré-Escolar , Desenvolvimento Fetal/fisiologia , Desenvolvimento Fetal/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Adulto , Idade Gestacional , Desenvolvimento Infantil/fisiologia , Desenvolvimento Infantil/efeitos dos fármacos
13.
Cells ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667284

RESUMO

This study investigates the combined effects of the neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31-Pro34]NPY at a dose of 132 µg and Ketamine at 10 mg/Kg on cognitive functions and neuronal proliferation, against a backdrop where neurodegenerative diseases present an escalating challenge to global health systems. Utilizing male Sprague-Dawley rats in a physiological model, this research employed a single-dose administration of these compounds and assessed their impact 24 h after treatment on object-in-place memory tasks, alongside cellular proliferation within the dorsal hippocampus dentate gyrus. Methods such as the in situ proximity ligation assay and immunohistochemistry for proliferating a cell nuclear antigen (PCNA) and doublecortin (DCX) were utilized. The results demonstrated that co-administration significantly enhanced memory consolidation and increased neuronal proliferation, specifically neuroblasts, without affecting quiescent neural progenitors and astrocytes. These effects were mediated by the potential formation of NPY1R-TrkB heteroreceptor complexes, as suggested by receptor co-localization studies, although further investigation is required to conclusively prove this interaction. The findings also highlighted the pivotal role of brain-derived neurotrophic factor (BDNF) in mediating these effects. In conclusion, this study presents a promising avenue for enhancing cognitive functions and neuronal proliferation through the synergistic action of the NPY1R agonist and Ketamine, potentially via NPY1R-TrkB heteroreceptor complex formation, offering new insights into therapeutic strategies for neurodegenerative diseases.


Assuntos
Proliferação de Células , Cognição , Proteína Duplacortina , Ketamina , Neurônios , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeo Y , Receptores de Neuropeptídeos , Animais , Masculino , Ketamina/farmacologia , Ketamina/administração & dosagem , Cognição/efeitos dos fármacos , Ratos , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptor trkB/agonistas , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Neurogênese/efeitos dos fármacos
14.
Mar Drugs ; 22(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667787

RESUMO

Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.


Assuntos
Região CA1 Hipocampal , Gerbillinae , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Sefarose/análogos & derivados , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Polissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo
15.
Neurotox Res ; 42(2): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598025

RESUMO

The investigation into the hippocampal function and its response to heavy metal exposure is crucial for understanding the mechanisms underlying neurotoxicity, this can potentially inform strategies for mitigating the adverse effects associated with heavy metal exposure. Melatonin is an essential neuromodulator known for its efficacy as an antioxidant. In this study, we aimed to determine whether melatonin could protect against Nickel (Ni) neurotoxicity. To achieve this, we performed an intracerebral injection of Ni (300 µM NiCl2) into the right hippocampus of male Wistar rats, followed by melatonin treatment. Based on neurobehavioral and neurobiochemical assessments, our results demonstrate that melatonin efficiently enhances Ni-induced behavioral dysfunction and cognitive impairment. Specifically, melatonin treatment positively influences anxious behavior, significantly reduces immobility time in the forced swim test (FST), and improves learning and spatial memory abilities. Moreover, neurobiochemical assays revealed that melatonin treatment modulates the Ni-induced alterations in oxidative stress balance by increasing antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT). Additionally, we observed that melatonin significantly attenuated the increased levels of lipid peroxidation (LPO) and nitric oxide (NO). In conclusion, the data from this study suggests that melatonin attenuates oxidative stress, which is the primary mechanism responsible for Ni-induced neurotoxicity. Considering that the hippocampus is the main structure involved in the pathology associated with heavy metal intoxication, such as Ni, these findings underscore the potential therapeutic efficacy of melatonin in mitigating heavy metal-induced brain damage.


Assuntos
Melatonina , Síndromes Neurotóxicas , Masculino , Ratos , Animais , Antioxidantes/farmacologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Níquel/toxicidade , Ratos Wistar , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle
16.
Rev Neurosci ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38607658

RESUMO

In this article, we, for the first time, provide a comprehensive overview and unified framework of the impact of poverty and low socioeconomic status (SES) on the brain and behaviour. While there are many studies on the impact of low SES on the brain (including cortex, hippocampus, amygdala, and even neurotransmitters) and behaviours (including educational attainment, language development, development of psychopathological disorders), prior studies did not integrate behavioural, educational, and neural findings in one framework. Here, we argue that the impact of poverty and low SES on the brain and behaviour are interrelated. Specifically, based on prior studies, due to a lack of resources, poverty and low SES are associated with poor nutrition, high levels of stress in caregivers and their children, and exposure to socio-environmental hazards. These psychological and physical injuries impact the normal development of several brain areas and neurotransmitters. Impaired functioning of the amygdala can lead to the development of psychopathological disorders, while impaired hippocampus and cortex functions are associated with a delay in learning and language development as well as poor academic performance. This in turn perpetuates poverty in children, leading to a vicious cycle of poverty and psychological/physical impairments. In addition to providing economic aid to economically disadvantaged families, interventions should aim to tackle neural abnormalities caused by poverty and low SES in early childhood. Importantly, acknowledging brain abnormalities due to poverty in early childhood can help increase economic equity. In the current study, we provide a comprehensive list of future studies to help understand the impact of poverty on the brain.

17.
Epilepsy Behav ; 155: 109722, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643660

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.

18.
Eur J Neurosci ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646841

RESUMO

14-3-3 proteins are a family of regulatory proteins that are abundantly expressed in the brain and enriched at the synapse. Dysfunctions of these proteins have been linked to neurodevelopmental and neuropsychiatric disorders. Our group has previously shown that functional inhibition of these proteins by a peptide inhibitor, difopein, in the mouse brain causes behavioural alterations and synaptic plasticity impairment in the hippocampus. Recently, we found an increased cFOS expression in difopein-expressing dorsal CA1 pyramidal neurons, indicating enhanced neuronal activity by 14-3-3 inhibition in these cells. In this study, we used slice electrophysiology to determine the effects of 14-3-3 inhibition on the intrinsic excitability of CA1 pyramidal neurons from a transgenic 14-3-3 functional knockout (FKO) mouse line. Our data demonstrate an increase in intrinsic excitability associated with 14-3-3 inhibition, as well as reveal action potential firing pattern shifts after novelty-induced hyperlocomotion in the 14-3-3 FKO mice. These results provide novel information on the role 14-3-3 proteins play in regulating intrinsic and activity-dependent neuronal excitability in the hippocampus.

19.
Neurooncol Adv ; 6(1): vdae040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645488

RESUMO

Background: Changes in the hippocampus after brain metastases radiotherapy can significantly impact neurocognitive functions. Numerous studies document hippocampal atrophy correlating with the radiation dose. This study aims to elucidate volumetric changes in patients undergoing whole-brain radiotherapy (WBRT) or targeted stereotactic radiotherapy (SRT) and to explore volumetric changes in the individual subregions of the hippocampus. Method: Ten patients indicated to WBRT and 18 to SRT underwent brain magnetic resonance before radiotherapy and after 4 months. A structural T1-weighted sequence was used for volumetric analysis, and the software FreeSurfer was employed as the tool for the volumetry evaluation of 19 individual hippocampal subregions. Results: The volume of the whole hippocampus, segmented by the software, was larger than the volume outlined by the radiation oncologist. No significant differences in volume changes were observed in the right hippocampus. In the left hippocampus, the only subregion with a smaller volume after WBRT was the granular cells and molecular layers of the dentate gyrus (GC-ML-DG) region (median change -5 mm3, median volume 137 vs. 135 mm3; P = .027), the region of the presumed location of neuronal progenitors. Conclusions: Our study enriches the theory that the loss of neural stem cells is involved in cognitive decline after radiotherapy, contributes to the understanding of cognitive impairment, and advocates for the need for SRT whenever possible to preserve cognitive functions in patients undergoing brain radiotherapy.

20.
Front Aging Neurosci ; 16: 1382492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646448

RESUMO

Activin A, a member of the transforming growth factor ß (TGF-ß) family, is widely recognized for its neurotrophic and neuroprotective function in the developing and injured brain, respectively. Moreover, in the healthy adult brain, activin A has been shown to tune signal processing at excitatory synapses in a fashion that improves cognitive performance. Because its level in human cerebrospinal fluid rises with age, we wondered whether activin A has a role in mitigating the gradual cognitive decline that healthy individuals experience in late-life. To interrogate the role of activin A in synaptic plasticity in the aging brain, we used an established transgenic mouse line, in which expression of a dominant-negative mutant of activin receptor IB (dnActRIB) serves to disrupt activin receptor signaling in a forebrain-specific fashion. In brain slices of young adult dnActRIB mice (2-4 months old), the NMDA receptor-dependent and -independent forms of long-term potentiation (LTP) at the Schaffer collateral-CA1 pyramidal cell synapse of the hippocampus were equally impaired relative to the extent of LTP measured in the wild-type preparation. Unexpectedly, the difference between the genotypes disappeared when the two forms of LTP were re-examined in slices from middle-aged mice (13-16 months old). Since the level of activin A and endogenous ActRIB both displayed a significant elevation in middle-aged hippocampus, we reasoned that with such a rise, the dominant-negative effect of the mutant receptors could be overcome. Substantiating this idea, we found that administration of recombinant activin A was indeed capable of restoring full-blown LTP in slices from young dnActRIB mice. Our data suggest that, beginning in the middle-aged brain, endogenous activin receptor signaling appears to become strengthened in an attempt to stave off cognitive decline. If further corroborated, this concept would also hold promise for new therapeutic venues to preserve cognitive functions in the aged brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...